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Abstract—The combined use of 3D scanning lasers with 2D
cameras has become increasingly popular in mobile robotics, as
the sparse depth measurements of the former augment the dense
color information of the latter. Sensor fusion requires precise 6-
DOF transforms between the sensors, but hand-measuring these
values is tedious and inaccurate. In addition, autonomous robots
can be rendered inoperable if their sensors’ calibrations change
over time. Yet previously published camera-laser calibration
algorithms are offline only, requiring significant amounts of data
and/or specific calibration targets; they are thus unable to correct
calibration errors that occur during live operation.

In this paper, we introduce two new real-time techniques
that enable camera-laser calibration online, automatically, and
in arbitrary environments. The first is a probabilistic monitoring
algorithm that can detect a sudden miscalibration in a fraction of
a second. The second is a continuous calibration optimizer that
adjusts transform offsets in real time, tracking gradual sensor
drift as it occurs.

Although the calibration objective function is not globally
convex and cannot be optimized in real time, in practice it is
always locally convex around the global optimum, and almost
everywhere else. Thus, the local shape of the objective function
at the current parameters can be used to determine whether the
sensors are calibrated, and allows the parameters to be adjusted
gradually so as to maintain the global optimum.

In several online experiments on thousands of frames in real
markerless scenes, our method automatically detects miscalibra-
tions within one second of the error exceeding .25 deg or 10cm,
with an accuracy of 100%. In addition, rotational sensor drift
can be tracked in real-time with a mean error of just .10 deg.
Together, these techniques allow significantly greater flexibility
and adaptability of robots in unknown and potentially harsh
environments.

I. INTRODUCTION

As robots are equipped with larger numbers and modali-
ties of sensors, accurate extrinsic sensor calibration becomes
increasingly important for the performance of perception sys-
tems. Traditional manual calibration techniques tend not to
scale well to multi-sensor configurations, and suffer limited
accuracy and flexibility. In addition, they are completely infea-
sible for situations in which a robot needs to dynamically and
automatically calibrate its sensors online, due to unforeseen
sensor movement.

In this paper, we discuss the automatic calibration of
traditional 2D cameras to 3D scanning lasers, and extend
our previously published offline methods [20] to offer online
solutions. Ever since the birth of mobile robotics, 2D cameras
have been among the most popular sensors for perceiving the
environment. Over the past decade, lasers have seen increasing

Fig. 1.

Our autonomous vehicle, with laser and camera mounted to the roof.
Although our camera is usually mounted directly above our laser (left), our
algorithms also successfully calibrate the sensors when they are far apart from
each other (right).

use, as their direct and accurate distance measurements provide
information not obtainable from traditional cameras. However,
lasers do not provide the high spatial resolution and valuable
color information offered by 2D cameras. Consequently, much
recent research makes use of the complimentary strengths of
the two sensors jointly [7, [15} 22} [23]].

On any mobile platform containing cameras and lasers, it
is of paramount importance that the sensors be calibrated to
each other. Our vehicle platform, with scanning laser and
panoramic camera mounted on the roof, is shown in Figl[l]
When the camera and laser are properly calibrated, laser
measurements can be correctly projected into the camera
image, and thus laser points can be associated with three-
channel color information. Conversely, pixels in the camera
image can be given depth values by querying the nearest laser
returns.

Camera-laser calibration has been a difficult problem to
tackle; as Le and Ng [5] explain, “It is very challenging to
calibrate a camera with a laser range finder. This is because
the camera gives 3D rays whereas a laser range finder gives
3D points.”

Over the past several years, there has been a number of
proposed solutions to the single camera / laser calibration
problem. In general, they can be clustered into two bins
on each of two axes: first, whether they require a known
and fixed calibration target (e.g. a checkerboard) or work in
arbitrary scenes, and second, whether they work automatically
or require hand-labeling of correspondences between laser
points and camera pixels. All of them have been offline
algorithms, and are useless for detecting or correcting real-
time calibration errors that occur during operation.

Several years ago, Zhang and Pless [1] proposed an algo-



Fig. 2.

rithm to calibrate a camera to a laser rangefinder using plane
constraints in a scene with a fixed checkerboard calibration
target. Shortly thereafter, Unnikrishnan et al. [2] published
a toolkit for manual calibration of cameras and lasers, also
assuming a dedicated calibration scene. More recently, Scara-
muzza et al. [4] demonstrated a technique for improving
visualizations of laser data, enabling a manual algorithm for
calibrating a rotating 2D laser to a camera in arbitrary scenes.
Theirs requires human labeling of correspondences between
laser points and camera pixels, and then computes the best cal-
ibration using the perspective-from-n-points (PnP) algorithm.
On the other side of the spectrum, Kassir and Peynot [12]]
provide a solution for automatic camera-laser calibration in the
presence of a specific calibration target; in this case, corners of
a large chessboard target are detected with their “chessboard
extraction algorithm”, and then automatically aligned with the
laser points. Pandey et al. [[10] calibrate the same sensors we
use in this paper, also automatically, but with an offline method
requiring checkerboard target patterns. Geiger et al. [17]
calibrate multiple cameras to a multi-beam laser in a single
shot, using multiple checkerboard patterns placed across a
room. Nunez et al. [6] automatically align laser points with
chessboard detections, but aggregate data over multiple frames
for higher accuracy, with motion determined by an inertial
measurement unit (IMU).

Recently, we described a solution to the most general
problem: calibrating a camera to a laser automatically, with
no hand-labeling, in an arbitrary scene with no known fea-
tures [20]. Although more flexible and significantly more
accurate than previous methods, it still requires offline pro-
cessing of sensor data, and takes several minutes to solve the
calibration problem. This limitation may not be a problem for
robots that have rigidly mounted sensors and operate in calm
environments, but it does prevent proper continuous operation
of robots whose sensors may occasionally move unexpectedly
for any number of reasons.

There exists some published literature on real-time camera-
only calibration; Melo et al. [18] calibrate a medical endoscopy
camera offline using a checkerboard pattern, and then adap-
tively updates its calibration parameters in real time using only

Two frames, showing RGB camera images with laser points corresponding to depth discontinuities overlayed in green (Top) and processed camera
images with inverse distance transform applied (Bottom). Across a sufficient number of frames, an accurate camera-laser calibration will cause the green
points to coincide with the red edges more than an inaccurate calibration will.

image data. Petersen and Koch [19] calibrate a camera to an
IMU on a mobile robot in real time, but requires a known
marker in the scene with a custom pattern.

Due to the greater difficulty of laser-camera calibration,
no online solution to the problem has yet been proposed.
While solving calibrations with arbitrarily poor initializations
remains infeasible in real time, we make two important contri-
butions to online calibration in this paper. First, we show that
it is possible to determine whether the sensor is calibrated,
in real time and with extremely high reliability, even if the
correct calibration itself remains elusive. This information can
in fact be very valuable to a robot, as it may choose to stop,
slow down, or otherwise alter its behavior upon discovering
that its fused sensor data are unreliable.

Second, we show that when starting from a correct calibra-
tion, the translation and rotation transform parameters can be
updated online in response to a slowly changing extrinsic pose
of a sensor. Thus, in situations where a sensor is slowly drifting
or rotating, the changes can be both detected and corrected in
real time, without any interruption to the proper functioning
of the robot’s perception system.

As long as there exist visible 3D objects with edges in the
scene (i.e. not only an expansive ground plane), our objective
function can differentiate between calibrated and uncalibrated
sensor transforms. Because we make no assumptions about the
existence of any known features or landmarks in our scenes,
our algorithms are eminently applicable to robots operating in
a wide variety of dynamic real-life environments.

II. SENSOR PROCESSING

The goal of our algorithm is to take a series of correspond-
ing camera images and laser scans, captured over time in an
arbitrary environment, and to automatically determine the true
6-dimensional transform between the two sensors. Specifically,
the six values are the X, y, and z translations, and the roll, pitch,
and yaw Euler angle rotations between the two sensors. These
six parameters uniquely determine the calibration. Whereas in
previous work [20] we assumed the calibration to be rigid
during the entire time spanned by the data, here we relax



that constraint, and instead approximate the calibration as rigid
only over much shorter windows of time.

An underlying assumption, which is used in [16], and which
[20] showed to be very robust, is that, everything else being
equal, depth discontinuities in laser data should project onto
edges in images more often when using accurate calibrations
than when not. Across a series of frames, even a weak signal
should overwhelm considerable noise.

We assume that the camera images are already calibrated
for their intrinsic parameters (e.g. geometric distortion), either
with manufacturer-supplied values or through another calibra-
tion procedure, e.g. [[13]. The laser data is assumed to cover
a field of view at least partially overlapping the camera, and
to come from multiple rotating beams, or a single beam on a
pan/tilt mountﬂ

The camera and laser data may either be captured simulta-
neously, or if they are not, then any time offsets between the
two sensors should be accounted for. Temporal correction is
easily achieved by projecting each laser point from the laser’s
origin at the time of detection. If a laser rotates while the
robot is moving, an IMU (or other device) can be used to track
the laser’s position over time, which allows laser points to be
projected into the camera image based on the laser’s position
at time the image was captured. In such a case, it is helpful to
first calibrate the location of laser itself [9, [11, |8} 121]; we use
the procedure described in [8]], which also works automatically
and in arbitrary scenes.

We now describe the algorithms used to process the image
and laser data.

A. Image processing

Assume we are given a series of camera images I
and point clouds P'" from n frames. Since the goal is to
align laser depth discontinuities with image edges, we filter
each camera frame I’ to give a metric of the “edginess” of
each pixel. We use a two-step process. First, each image is
converted to grayscale, and each pixel is set to the largest
absolute value of the difference between it and any of its 8
neighborsﬂ We call this edge image E; an example is shown
in Fig[3]

Next, we apply an inverse distance transform to each edge
image £, in order to reward laser points which hit pixels
near edges; effectively, this smooths out the objective function
and thus helps to avoid local optima in the search procedure.
We use the LI distance for ease of computation; in doing so,
we can apply the transform in time linear in the number of
pixels. Effectively, each edge has an exponential spilloff into
its neighbors. Each pixel D; ; is computed as follows:

Dij=a FEij+(1l—a) maxE,, - ymaz(lz=illy=il) (1)
@y

'In principle, the algorithms described here apply equally to the case of a
single-beam laser. However, due to the reduced information generated by a
single beam, it is likely that more scans would be required for a single-beam
laser than a multi-beam or tilting laser for equally robust results. Although
not tested here, a dense flash-lidar sensor should be easily amenable to the
algorithms described in this paper.

2The choice of edge filter is not particularly important.

Fig. 3. Example edge-processed image frame (Top) and after inverse distance
transform (Bottom).

where 7, 7 and x, y each correspond to row and column indices
for pixels in the image. We use a = % and v = .98, as in
[20]. Examples of images after the inverse distance transform
is applied are shown in Fig[2] (bottom), and a before/after
comparison is shown in Fig[3]

B. Laser processing

For laser returns, we consider each beam independently, and
look for points that are closer than at least one of their two
neighbors; due to parallax and occlusion, points which are
farther than their neighbors are less likely to coincide with
an image edge. Specifically, we use each point cloud P’ to
compute a new point cloud X, where each point p in X? is
assigned a value as follows:

2

Here, the .r suffix refers to the laser range measurement in
meters corresponding to that point. We use v = .5, and for
efficiency, we filter out all points with a depth discontinuity
of less than 30cm. The laser points in Fig[2] (Top) correspond
to the points selected in X.

X; = ma:c(P;_l.T — P;.T, P;_H.?“ - P;T; 0)”

III. MISCALIBRATION DETECTION

Given a calibration C, we can project all laser points in
X% onto the image D' using basic geometry; we consider
only those points which actually fall in the image. Unlike the
offline case in which C' would be scored across all n frames in
the dataset, here we compute the objective function Jo over
just the last w frames, where w is our window size:

n X7
Jo= 3 2 X]-Dy 3
f=n—w p=1

where f iterates over all frames, p iterates over all 3D points
in X7/, and (i, ) refers to the coordinates in image space
onto which point p projects. Put simply, this function sums up
the depth discontinuities at each laser return in X times the
“edginess” of D for some calibration C.



Fig. 4. We used realistic, real-world data to train and test our algorithms.
Acquired in the late afternoon, many frames suffer from undesirable artifacts
such as lens flare, ghosting, and blooming (Top), sparse 3D features (Middle),
and underexposure (Bottom). Although calibration on frames such as these is
more challenging than on well illuminated frames with plenty of 3D features,
a sufficiently strong signal is still present.

Ideally, J would be optimized by performing a global search
over all possible calibrations C. However, that six-dimensional
space cannot be effectively searched in real time, and the
objective function is not convex. Therefore, an online search
for the optimal value of J is infeasible.

However, despite that the global optimum of J is unob-
tainable in real time, it is possible to determine, with very
high accuracy, whether a given C'is correct to within a given
threshold. For many classes of problem, it is often far simpler
to discern whether a given solution to a problem is correct
than it is to determine a correct solution from scratch. Indeed,
the same holds here.

Just as a highly out-of-focus camera image is obviously
not focused properly, even if the viewer cannot determine the
precise distance that the camera should have been focused
at, it is possible to determine that a proposed C is wrong
even without knowing what the correct C' is. In other words,
whether or not Jo is a local optimum of J is a strong
indication of whether C' is correct. But why should that be,
given that we know J not to be convex? The answer is that
even though J is unlikely to have only one local optimum,
the probability of any given wrong calibration C' being one of
those optima is extremely small.

Given a calibration C, we can compute Jo very quickly.
If we perform a grid search with radius 1, centered around a
given C, across all 6 dimensions, we will compute 36 =729
different values of J (one of which will be J¢ itself; that is,

Single-Frame Window
100

)| l W_ﬂ‘ﬂ”
M LU (b Ll

|- Lt
§‘2‘]"(‘i" " | M:‘ i | “\'w ‘M

\4 v \

% of worse calibrations
N [e)) 2]
—
g’ié;r—

20
% S S S S S S
& $ K S Ko S

Frame #

Fig. 5. Probability of worsening the objective function due to perturbation
of calibration parameters. In both graphs, the top blue curve is the correct
calibration, and the other curves represent incorrect calibrations. The top graph
analyzes each frame individually, while the bottom considers a window of 9
frames at a time. Note that the larger window size engenders a significantly
larger disparity between the correct and incorrect calibrations.

the center of the grid)ﬂ Let Fo be the fraction of the 728
perturbed values of J that are worse than J¢. For example, if
all 728 perturbations of C' result in values of J worse than J¢,
F would be 1. If half of the 728 perturbations of C' result in
values of J worse than Jo, Fo would be .5.

The key idea is that when C' is correct, most perturbations
of C should lower the objective function J; after all, a
perturbation of a correct calibration must not also be correct,
and therefore, if our objective function is effective, it should
be worse for inaccurate calibrations. On the other hand, if C'
is incorrect, there should be a very low chance that Jo will be
at a local maximum of J. We now show that this distinction
is empirically true.

Fig[5] plots, over a series of frames, what fraction of the 729
perturbations of C' result in values of the objective function

3The chosen size of the perturbations (in terms of angular rotation and
linear translation) corresponds to the granularity by which miscalibrations
are desired to be detected. The smaller of a miscalibration that needs to be
detected, the smaller a perturbation that should be used; the tradeoff here, as
we discuss later, is that smaller perturbations require more frames for reliable
results.



J that are worse than Jg, for both the correct C' and several
incorrect choices of C. In other words, it plots Fo for each
of six different C's across a series of frames. Our hypothesis
is confirmed: the F values for the correct calibration are
significantly higher than those of the incorrect calibrations.
If we only use a window size of 1 frame, ie. w = 1,
we see that the correct calibration (top blue curve) usually
gives the best value of J out of all perturbations, and for all
frames, at least 80% of perturbations result in a decrease of
J. On the other hand, the other five curves are quite noisy,
but on average approximately 50% of perturbations to those
calibrations improve .J.

Moving to a larger window size of 9 frames (which is just
under one second of data at 10Hz), the two cases become sig-
nificantly more disparate. Here, the correct calibration almost
always gives the single best value of the objective function .J,
and no frame ever goes below Fo = .9. At the same time, the
incorrect values of C' are now much more concentrated around
Feo = .5; both of these changes together make it even easier
to disambiguate between the correct and incorrect case.

We can also plot these data in a histogram, making it even
more clear how distinct the two distributions are. In Fig[6] we
see the distributions for the wrong calibrations on the left, and
the correct calibrations on the right. It is readily apparent how
different the two distributions are. Furthermore, we see that the
top graphs, using a window size of 1 frame, are more similar
to each other than the bottom graphs, which use a window
size of 9 frames; this is expected, as the signal-to-noise ratio
dramatically increases with the benefit of multiple frames.

These observations suggest a natural algorithm for determin-
ing whether the sensor is calibrated. Consider the two separate
distributions of Fz across a number of training frames, one for
correct calibrations and the other for incorrect calibrations. We
can fit a Gaussian to each of the two distributions, which then
allows us to compute, for any value of F, the probability
that it was sampled from one distribution versus the otherf’]
Building the distributions from tens of incorrect calibrations
(each generated by randomly perturbing the 6 calibration
parameters) and one correct calibration on several hundred
frames from each of several different logfiles, using a 9-frame
window, we obtain a mean of u; = 99.7% and standard
deviation of o1 = 1.4 for correct calibrations, and a mean of
1o = 50.5% and a standard devation of oo = 14 for incorrect
calibrations.

Therefore, using the standard formula for a Gaussian distri-
bution, we can compute:

e—.5(w—p,1)2/af

P(calibrated) = “)

e—.5(3c—/n)2/of + e—.5(ac—H2)2/‘7§

where P represents the probability that a calibration C'

4Empirically, the distributions appear closer to Laplacian than Gaussian,
but in this case, the distinction is relatively unimportant. Since the histograms
corresponding to the correct and incorrect cases are so different from each
other, a precise model would be of little practical benefit.

Wrong Calibrations, Single Frames Correct Calibration, Single Frames
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Wrong Calibrations, 9-Frame Window Correct Calibrations, 9-Frame Window

Frequency
Frequency

% of worse calibrations % of worse calibrations

Fig. 6. Histogram plots illustrating the widely disparate probability dis-
tributions of the objective function behavior when considering correctly vs.
incorrectly calibrated sensors. Note that the x-axis for the top-right graph goes
from 70 to 100, and for the bottom-right graph goes from 90 to 100; thus, the
correct and incorrect distributions are even more different than they initially
appear.

having F» = x is a correct calibrationE] It is important to
note that P is not a probability distribution over calibrations;
rather, it is a statistical test which gives the probability of the
observed data arising from a correctly calibrated sensor versus
an incorrectly calibrated sensor.

To be clear, although mathematically there is only exactly
one calibration C' which is actually “correct”, so that even an
arbitrarily small deviation becomes “incorrect”, that is not the
criteria used in this classification. Instead, the formula simply
answers whether the sensors being calibrated or uncalibrated
best explain the observed data, assuming each is equally
likely a priori. Importantly, the tightness of the definition of
correctness can be adjusted by changing o, while the tightness
of the definition of incorrectness is controlled by os.

Thus we have derived an easily computable formula that
yields the probability that the robot’s current sensor calibration
is accurate. Depending on the context, if this value falls below
a designated threshold, a robot may choose to alert a command
center, suspend its operation until further notice, or simply
pause its activities to perform a more comprehensive offline
calibration before resuming its work.

IV. AUTOMATIC CALIBRATION TRACKING

In addition to determining whether a calibration is likely to
be correct or not, we can also exploit the local convexity of
the objective function J near the global optimum J¢ to track
small changes in C' over time.

If we consider all 729 perturbations of C' from the grid
search described in the previous section, some of them should

5This formula is accurate as long as we assume a priori that a correct
calibration is as likely as an incorrect calibration. However, a nonuniform
prior probability of C' being correct can be trivially incorporated into the
equation, if desired.
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Fig. 7. The sensor becomes synthetically miscalibrated at the halfway point
(Frame 150). Here we see that during the first half, when the sensor is
correctly calibrated, almost all of the perturbations to C' cause the objective
J to decrease. However, when the sensor is shifted by a fraction of a degree
in roll, pitch, and yaw, and several cm in X, y, and z, that ceases to be the
case.

be improvements if C is slightly incorrect. Of course, if C'
is wildly incorrect, there is no guarantee that ascending .J
will lead us in the right direction. However, if C' is close to
the right answer, gradient ascent would be expected to work.
Our implementation is straightforward: at each iteration, the
calibration C remains constant if all perturbations of C' cause
J to decrease, or else we select a new calibration C’ which
is the calibration out of all 729 candidates that gives the best
value of J.

Indeed, as we show in the results section, a slow and gradual
adjustment of C'in the direction of higher J does in fact allow
us to track calibration changes over time. Unsurprisingly, the
more frames that are used in the window, the better the signal-
to-noise ratio is. It is not realistic to expect a single-frame
analysis to work all of the time, particularly in poorly-lit areas,
areas with fewer 3D objects, or under severe flare or other
artifacts. Instead, we find that a 9-frame analysis window is
significantly more robust.

As a consequence of a multi-frame window, we assume
that the calibration changes within the window are negligible.
For a window size of under a second, this should be a valid
assumption in almost all scenarios.

V. EXPERIMENTAL RESULTS

For our experiments, we used a Velodyne HDL-64E S2
LIDAR sensor with 64 beams oriented between -22 and +2
degrees vertically and rotating 360 degrees horizontally. The
unit spins at 10Hz and provides around 100,000 points per
spin. The camera was a Point Gray Ladybug3 Panoramic
unit with 5 separate cameras, of which we used just one for
this paper. We ran the camera at 10Hz and used the middle
third of the 1200x1600 vertical image, since the vertical
field of view of the camera far exceeds that of our laser.
The sensors were mounted to a vehicle equipped with an
Applanix LV-420 GPS/IMU system, which was only used to
adjust for local motion of the laser during each frame; no

global coordinate frame or GPS coordinates were used, as the
algorithms presented here do not require a globally consistent
trajectory of the vehicle.

Our algorithms were implemented in C++, and all of the
results we describe below were obtained in real time on a
laptop CPU.

A. Online Miscalibration Detection

We performed an extensive series of evaluations to deter-
mine how quickly and accurately our algorithms could detect
sensor miscalibrations. Using the distributions from Figl6| and
the probabilities given by Eq. (4), we evaluated thousands of
frames with correct and incorrect calibrations.

A typical example is shown in Fig[7] Here, for 150 frames,
the correct calibration was used, and on every frame, the
probability of correct calibration was 100.0%; again, the
two distributions are so different, that in almost all cases,
the algorithm will be essentially sure of one answer or the
other. Within a few frames of the miscalibration (using a
9-frame window), the percentage of bad perturbations drops
precipitously, and remains in a range well within the incorrect
distribution; again, in all of these cases, the probability of
incorrect calibration is 100.0%.

We note that in generating these distributions, we used ran-
dom translational offsets of up to 20cm and random rotational
offsets of up to 2 degrees. However, we also evaluated how
accurately we could detect very small calibration errors. Of
course, arbitrarily small errors will be undetectable, especially
with only a 9-frame window.

In our experiments with a 9-frame window, over thousands
of frames, we never incorrectly classified a calibration as being
correct or not if the margin of correctness was at least .25
degrees or 10 cm. Testing rotational calibration errors as small
as 0.1 degrees, we were able to discern the correct answer over
90% of the time. There is a tradeoff between window size and
error detection, so if it is important to be able to reliably detect
errors on the order of .1 degrees, a larger window could be
used, with the downside that it would likely take over a second
to detect the misalignment.

B. Online Miscalibration Correction

To evaluate the online calibration tracking performance of
our algorithm, we applied additive random synthetic offsets
to all three rotation parameters of our camera calibration
transform at each frame in a 1500-frame logfile. Thus, the
roll, pitch, and yaw of the sensor was artificially modified by
Brownian motion in each parameter, and we attempted to track
these (unknown to the algorithm) synthetic rotational offsets
in real time. Each offset was either increased or decreased by
.02 degrees on each frame, at random, which represents quite
a high rate of drift for a sensor on a robot.

We believe that rotational drift is the far more common case
for sensor movement on mobile robots, as it is common for a
sensor to be relatively immobile but still slightly free to rotate
about one or more axes.
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Fig. 8. Simultaneously tracking synthetic Brownian motion of roll, pitch,

and yaw in real time. Our system does a good job at tracking random roll and
pitch rotations, with an average mean error of .12 degrees, and an excellent
job at tracking random yaw rotations, with an average mean error of only .06
degrees.

In our experiments, we were able to simultaneously track
yaw with a mean average error of .06 degrees, and roll and
pitch with a mean average of .12 degrees each. It is not
surprising that yaw is the most precise, as the nature of the
scanning laser (sweeping from left to right with high horizontal
angular resolution) makes it considerably more sensitive in
that dimension. In contrast, the laser’s vertical resolution is
several times lower than its horizontal resolution, and in most
scenes, there are typically fewer 3D features in that direction
as well, which explains the greater difficulty of tracking pitch.
Finally, changes in roll induce smaller deviations in pixel space
than yaw and pitch rotations, since points in the center of the
frame are unaffected by roll. Overall, an average rotational

Fig. 9. Tracking calibration errors in real time. (Top) shows the first frame in
a 400-frame sequence. Initially, the transform is correct. We then synthetically
perturb two translation and two rotation parameters, over the course of the 400
frames, resulting in a badly miscalibrated sensor (Middle). However, with our
online tracking algorithm, the transform updates itself in real time, adjusting
to the perturbations, and ends up almost perfectly calculating the synthetic
shift all the way through the end of the sequence (Bottom).

error of .10 degrees across all dimensions is quite low, and
actually exceeds the precision of most offline calibration
techniques [12 4]. Fig[8] shows how accurately we are able
to track random sensor drift in all three rotational dimensions
at once.

A qualitative example of tracking is shown in Fig[9] Here,
the algorithm starts out with the correct calibration, but then
the calibration is synthetically worsened over time, in two
translational and two rotational dimensions. After 400 frames,
the synthetic calibration is wildly inaccurate, but the tracked
result, which was done in real time, is very well aligned.

VI. CONCLUSION

As robots move away from laboratory and factory settings
and into real-life, unpredictable, and long-term operations, it
is essential that sensor miscalibrations do not render them
inoperable. A robot should be able to detect and correct errors
in its calibration in real-time during operation, so that it can
continue operating safely and effectively.

In this paper, we have developed two new algorithms
to assist robots equipped with cameras and lasers in the
reliability of their perception systems over time. The con-
stant background monitoring algorithm that detects sudden
miscalibrations is an important tool for robots which need to
know whether they can actually rely on the sensor data they’re
receiving. While this is but one of many important checks a
robot ought to perform on its sensor data, we believe it is an
important, and perhaps underappreciated one.

Additionally, we have shown that it is possible to track
gradual drift of sensor pose over time, without performing



computationally intensive global optimizations over the en-
tire search space. This technique is suitable to be run in
a background process, consuming very little CPU time, but
potentially significantly improving the accuracy of a percep-
tion pipeline that includes camera-laser fusion. As expected,
there is a tradeoff between the sensitivity with which minor
miscalibrations can be detected and the number of frames
required to make the determination. Yet even using less than
one second of data, our results are more accurate than state-of-
the-art offline techniques which require a calibration target [[12]]
or hand-labeling of camera-laser correspondences [4].

Further improvements in tracking accuracy and robustness
should be possible by considering larger grid radii or by using
a Monte Carlo sampling approach, such as a particle filter,
rather than the greedy approach described here.

Although we focused on calibrating cameras to lasers in
this paper, we hope that some of these insights will be useful
to a variety of calibration tasks. In particular, the formation
of a simple objective function that can discern the difference
between a correctly and incorrectly calibrated sensor is often
relatively straightforward, and from that starting point, many
of the techniques discussed here should be readily applicable.
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