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Abstract— Keeping pace with technological progress, robot
sensors are generating increasing amounts of data; a particular
recent trend has been a shift from single-beam LIDAR sensors

be calibrated without great difficulty, deriving an accurate
calibration for lasers with many simultaneous beams has been a
tedious and significantly harder challenge. In addition, existing
calibration methods require specific and known environmental
features.

Instead, we propose a fully unsupervised approach to multi-
beam laser calibration. We attempt to recover optimal parame-
ters for each beam’s orientation and distance-response functio
as well as a fully probabilistic generative model for each beam’s
remittance response to surfaces of varying reflectivity. Our
method allows simultaneous calibration of tens or hundreds of rjg 1. A single 360-degree scan from the 64-beam VelodyBAR. Points
beams, each with its own parameters. In addition, we recover the are colored by height for visual clarity.
sensor’s extrinsic pose relative to the robot’'s coordinate frara.

Crucially, our approach requires no specific calibration target,
instead relying only on the weak assumption that points in space
tend to lie on contiguous surfaces. Specifically, we define an
energy function on point clouds that penalizes points far away
from surfaces defined by points from other beams. Then, by
aggregating points acquired across a series of poses, we take
derivatives of the energy function across pairs of beams with
respect to individual parameters. Using an iterative optimization
method we arrive at a globally consistent calibration with very
low error.

Demonstrating our algorithm with a 64-beam LIDAR unit
on a moving vehicle equipped with an IMU, we show that we
can precisely solve for the LIDAR’s extrinsic pose and derive
accurate 192-parameter orientation and distance calibrations
even from grossly inaccurate initializations and without any Fig. 2. Our vehicle platform. Velodyne LIDAR unit is circled red.
calibration target or environment measurements. We also show
significant improvements to the resulting remittance environment
maps resulting from these calibrated parameters as well as the . . .
learned Bayesian model for each beam’s remittance response. 1S @ substantially harder problem than calibrating one or a

few beams. Second, for applications that utilize the iritgns
. INTRODUCTION returns of LIDAR sensors, e.g. recent mapping and locainat

Light Detection and Ranging (LIDAR) sensors have bework [6], it is important that the intensity remittance vesdu
come increasingly common in both industrial and robotiggree across beams. In both cases, the number of parameters
applications. LIDAR sensors are particularly desirable fanakes supervised measuring and calibration at best tedious
their direct distance measurements and high accuracy, bBod at worst infeasible.
traditionally have been configured with only a single rotgti  To date, there has been limited research on supervised
beam. However, recent technological progress has spawweatibration for multi-beam LIDARs. The most popular such
a new generation of LIDAR sensors equipped with manynit as of this writing is the Velodyne HD-64E spinning
simultaneous rotating beams at varying angles, providing lADAR, which has been used extensively for many recent
least an order of magnitude more data than single-beaobotics applications. A representative scan from suchhamse
LIDARs and enabling new applications in mapping [6], objeds shown in Fig. 1. In [4], the authors present a supervised
detection and recognition [15], scene understanding [@8d, calibration technique for this LIDAR requiring a dedicated
SLAM [9]. calibration target and many hand measurements, followed by

In order to effectively harness this massive increase imbea traditional optimization step. Indeed, the manufactuedr
count, new calibration methods are required. First, calibg this laser built a dedicated calibration facility which yhese to
angles and range readings for tens or hundreds of bearnfiect thousands of measurements followed by an unpudaish




optimization routine, in order to provide a calibration @fch
beam to the customer.

In the case of single-beam LIDARs, there have been at- &%
tempts at unsupervised recovery of roll, pitch, and yaw in
a known rectangular enclosure [2] as well as an attempt to
estimate the noise parameters of a single-beam LIDAR [3].
Recent work has provided algorithms for calibrating ong [10
or two [1] single-beam LIDARs on a moving vehicle platform
using hand-placed retroreflective calibration targetdcivhad-
ditionally requires an intensity threshold for correspamncks.

None of these techniques extends to the unsupervised cal-
ibration of a multi-beam LIDAR. Indeed, we are unaware df_fig. 3. VeIonne ppints from two adjacent beams (of 64) accatat_il over
any algorithm in the ltrature to date that is able o recoviTe, "4 PrASEieS o Sbi one beam colored v, he et t
the extrinsic pose of any LIDAR unit relative to a vehicle
frame when it is the only such sensor on the vehicle and
when the environment has no particular known features. In
addition, we are similarly unaware of an existing algorithm
that calibrates individual beam parameters for multi-beam . . . )

In the case of a multi-beam LIDAR, extrinsic calibration

units without hand-measured environmental features. ) . . ! . i
Although hand measurements are practical in some Ca§8§13|ders the mounting location of the entire unit relatve

for single-beam sensors, especially for translationaieasf, it '€ vehicle’s own coordinate frame, while intrinsic caition
is particularly difficult to measure sensor orientationhwhigh conS|d(_ars the 'conflglljratlon of each individual beam 'r,‘S'(%'e
accuracy in the absence of a dedicated calibration envieohm the unit. In this section we present a method for extrinsic
Furthermore, for sensors with many beams, such measufalioration, assuming a known intrinsic calibratfon.
ments may take prohibitively long and would inevitably be At the most basic level, our approach for both calibrations
suboptimal in accuracy. Finally, techniques that requirec-  leverages the simple observation that laser returns esjec
ically placed retroreflective targets with careful thresimg into three dimensions are not randomly distributed in space
to pick them apart from the rest of the environment ar@deed, because the returned points are reflections off of
not applicable in all settings a robot might encounter; thédfysical surfaces, it is impossible for a properly calibcat
also result in the consideration of only a tiny fraction oéthSensor traveling a known trajectory to return a collection
available data. of accumulated points that is randomly distributed in three
Thus, we propose a novel fully unsupervised extrinsic afimensions. As such, the proposed method relies only on the
intrinsic calibration method for multi-beam LIDAR sensordveak assumption that points in space tend to lie on contiguou
that requires no calibration target, no labeling, and nouahn Surfaces.
measurements. Given a multi-beam LIDAR attached to aConsider Fig. 3, which depicts LIDAR returns from just two
moving platform or robotic vehicle along with accompanyadjacent beams accumulated over several seconds of vehicle
ing inertial measurment unit (IMU) readings, our algorithninotion along a known trajectory. Here, we color one beam
computes hundreds of sensor parameters from only secoifdsed and the other in white; it is apparent that due to the
of data collected in an arbitrary environment without a map-IDAR’s movement through space, to a large extent both
Our contribution consists of three complimentary unsupgpeams end up hitting the very same surfaces.
vised calibration algorithms. The first discovers the LIDAR The location of the LIDAR unit relative to the vehicle’s
extrinsic 6-dimensional pose relative to the vehicle’srtia€ coordinate frame will be expressed with an x (longitudingl)
frame, including translation and rotation. The secondwstiés (lateral), and z (height) offset along with roll, pitch, apaw
optimal vertical and horizontal angles for each individo@am angles. The (0, 0, 0) reference point and reference orientat
and an additive distance offset for each beam’s range rgadiis specified by the coordinate system being used, i.e. tleethr
Finally, the third derives a fully Bayesian generative midde dimension point and orientation that the vehicle’s positig
each beam’s remittance intensity response to varying airfaystem considers to be the origin.

reflectivities in the environment. In contrast to existing methods, our approach makes no

In the sections that follow, we will describe each of thgssumptions about the environment other than that it is gen-
above algorithms conceptually. We will then provide detailera|ly static and contains some 3D features, i.e. is not just
about our particular implementation of these techniques orsmooth ground. In order to achieve an accurate calibration,

ground vehicle with a roof-mounted 64-beam rotating LIDARye record LIDAR measurements as the vehicle transitions
along with several results demonstrating the effectivehese

algorithms even when presented with poor initial calitmagi.
9 P P 1 neither the extrinsic nor intrinsic calibration is knovprecisely, then

Finally, W_e will diSCL_JSS implications for related applicats the two separate calibration procedures can be performediviy until both
and possible extensions for future research. converge.

1. EXTRINSIC CALIBRATION



to the density of data from multi-beam LIDARS, this local
neighborhood for each point is very small. We show an
example of these surface normals in Fig. 4, where the red,
green, and blue channels are colored according to normal
vector's x, y, and z components at each point.

A further benefit of the high density of points returned
by multi-beam LIDARs is that almost any surface will be
nearly locally planar at the resolution of the pointclouul;d,
projecting points from one beam onto the surfaces defined by

Fig. 4. Accumulated points colored by computed surface northal;red, pOIntS. in n.elghbormg beams results in very low errors when

green, and blue channels respectively are set to the sisrface, and z all calibrations are accurate.

components of the normal vector at each point. Given the above energy function, all that remains is to
select the extrinsic calibration that minimizes the totrs.

) _ _Although in theory the objective is not necessarily conaed
through a series of known poséGlobal pose information {ys finding the true global optimum cannot be guaranteed in
is irrelevant, as there is no existing map, so only local pogg, reasonable amount of time, in practice the energy fomcti
information is required. Local pose data may be acquired i quite smooth and standard search heuristics perform very
any number of ways, e.g. from a wheel encoder and IMy,q.
from an integrated GPS/IMU system, or from a GPS system, o, approach, we alternatively optimize the translation
with real-time corrections. Again, itis only the relativedtion 5o meters and rotation paramters until both have corsterge
of the vehicle through the trajectory that is relevant to theyr ach optimization, we utilize grid search, which coresar
calibration, so no global pose data is necessary. _the current energy score with the score that results fromsadj

Now, we dgfme an energy function on point clouds .Wh'ch‘]g the variables in question in all possible directionsilyi
penalizes points that are far away from surfaces defined Whereas a coordinate descent iteration takes time linearly

points from other beams: proportional to the number of variables, grid search takes
B bi+N time exponential in the number of variables, as it considers

J= g ZWk”nk'(pk—m()HZ all combinations of directions. As a result, it is less prooe
bi=1bj=B—N getting stuck in local minima, and as neither translation no

whereB is the total number of beams anhtis the number of irgt:('glrcr)]n LT:{?Q?]ZT;IIytrgifamreptgragxt:r;eﬁ;a\,rvlﬁg I:(s:,ogrg]adrs;
neighboring beams we align each beam to, mp y o pie, S e
rotation change, each of roll, pitch, and yaw can be incebase

k iterates over the points seen by bebm . .
px is the kth point projected according to the current tramafor held constant, or decreased, which results in 26 new compar-

my is the closest point tgx seen by beanh;, |sci/r\1/s totthte Cl_Jtrr:ent sclorté v N : iterat il
Ny is the surface normal at poim, e start with a relatively large step size, iterate unti

- d repeatedly reduce the step size untiewe'v
andwy is 1 or 0 based on whethdipy — my|| < drmax convergence, an ; .
This energy function bears sirﬁilarity tc|)‘ the point—to-manreaChed the finest granularity we desire. At the end of the las

iterated closest point (ICP) error function [7], with twoyke optimization, we obtain our final calibration parameters.

differences. First, we compare surfaces defined by points in m

each beam individually against points in neighboring beams

This has the crucial benefit that an erroneous calibrationThe motivation in the previous section applies equally to

between beams will not significantly affect surface nornials the case of intrinsic calibration. That is, an intrinsicilsgdtion

the set of points seen by any individual beam. Second, unlil#@t computes each beam’s horizontal and vertical angle and

in ICP, we are not dealing with rigid point clouds, as a chang@nge offset correctly will necessarily yield a lower energ

in any calibration parameter will transform the points imtth score than an incorrect calibration.

beam’s point cloud in a complex way, since in this case thelt is worth emphasizing that this property is a direct conse-

points in each cloud were observed at different times angl thguence of the fact that the vehicle moves during data collec-

from different poses of the sensor. tion. For a stationary vehicle, it is impossible to disanulaitg
Surface normals are computed separately per beam, @gftain calibrations; indeed, many possible angles anderan

fitting a plane to each point’s 20 nearest neighbors in tigéfsets may be equally plausible in that case. But when the

accumulated projected points from the entire trajectonye D vehicle moves in a known trajectory, no longer will incotrec

. I NTRINSIC CALIBRATION OF EACH BEAM

2The vehicle trajectory can be arbitrary, but must include ande in yaw 3It is important to note that for every possible calibratiomsidered, all
so that lateral and longitudinal offsets of the LIDAR can teedted; if the points must be reprojected into 3D space based on the vehjmise at the
vehicle only moves straight, these cannot be disambiguatiedlaBly, we time each point was acquired. Thus, a calibration change doesvarp or
do not attempt to recover the sensor’s height, as our vehielaya remains distort all points in the same way, as the effect of a calibrathange on
nearly parallel to the ground, though height can trivially determined by each individual point depends on where the vehicle was dirtiethat return
considering the distance to points the vehicle drove over. was measured.



calibrations result in plausible pointclouds when eachmiiea
returns are accumulated over time and projected apprepyriat
into 3D space.

Although the energy function used to calibrate the sensor’s
extrinsic pose is equally applicable to its intrinsic cedition, it
is intractible to perform grid search over 3 parameters &mhe
of tens or hundreds of beams jointly. Instead, we alterpatel
consider all horizontal angles, all vertical angles, ahdaaige
offsets until convergence. At each step, for the variabtes i
guestion, we take empirical derivatives of the energy fianct BT
across pairs of beams with respect to the individual pararset e lntensiy
Consider again the energy function:
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Fig. 5. Bayesian prior for beam remittance response funam®a function
B bi+N 2 of surface intensity, used to initialize EM.
=5 3 Tl (peml
bj=1bj=bj—N

At each iteration, for each bea and neighboring beamsintensity readings for map cells where beamobserved
b; we hold fixed the accumulated projected pointclouds angtensity a.

accompanying surface normals associated with bbamnd  Taking this further, we can derive a probabilistic calitwat
then re-project the points from beamwith the parameter in that specifically models the uncertainty and noise chariaete
question increased and then decreased by some incremenfics of each beam, which in practice are often very different
For each of the two possibilities, the inner part of the epergye note that although environment reflectivity is of course
function, 3 wi|| k- (Px — M) % is recomputed; the parametergontinuous, for computational reasons we restrict theeglu

is then changed byr in whichever direction improves thetg jntegers between 0 and 255, as this matches the range of
objective maximally, or else the parameters is held constanne Velodyne’s returns. Thus for each map celive maintain

any perturbation is worse. a distributionP(m) indicating the probability that map ced]
In this manner, we iteratively loop through all parameteligys intensitym, for m = 0 to 255.

and beams, optimizing the objective function at each stefi, U oy, for each beant we wish to estimate a distribution
either some predetermined number of iterations is reachedF;gai‘m) indicating the probability that bearb; will return
until the change in the global objective function becomds Sqntensityai given that cellc; has intensitym. Each map cell is
ficiently small. We note that although this heuristic worksliw initialized with a uniform intensity prior, and for each lea
in practice, unlike with grid search for extrinsic caliboat, it we initialize the prior

is not actually guaranteed to lower the objective function i

any given iteration, as it updates a particular parameter fo (a—m)?

all beams in each iteration. Given the extremely large $earc P(alm)=n -exp<r> +e&

space, however, such approximations are reasonable, and, a

we show in the results SeCtion, work very well in practice. Wherer’ is the norma“zer;[ controls the peakiness of the

IV. REMITTANCE CALIBRATION distribution, ande affords a nonzero probability of a random
In addition to estimating the LIDAR's pose and bearHwtensity return. With this initialization_a priori beams are
parameters, we also derive a Bayesian generative model“?‘?ly tq ret!”” values near the true brightness of the map, a

each beam’s response to surfaces of varying reﬂectiviuygusiS own In Flg: 5 o

Expectation Maximization. [8] Starting with the initializations above we then alternate
As the vehicle transitions through a series of poses, fegween computing>(m) for each map cell (E-step) and

T be the set of observation, ..., z,} wherez is a four- ComputingP(ajm) for each beam and map intensity (M-step).

tuple (bi, ri,a, i) containing the beam ID, range measuremenfV/e note that while the intensities of eac_h map cell are by no

intensity measurement, and map cell ID of the observatigh€ans independent, because they are jointly affected by the

respectively. The map may be comprised of 2D cells ilﬁeam models, they are condl_t|onally independent of eaatr oth

which points are projected to the ground plane, or full 381ven the beam models, which allows us to apply EM. The

correspondences can be used. As we have shown in previg@date equations are as follows:

work [6], the deterministic calibrated outpata, j) of beam E-step:

j with observed intensita can be computed in a single pass P(mg=m)=n- |—| P(a|m;by)
as follows: i:Gi=k

c(j,a) ==Eger[a | (Fk:ci = cc, b= j,a=a),bi # j)] Thus, in the Expectation step we compute the distribution
That is, the calibrated output when begjmobserves in- over intensities for each map cell given the current beam
tensity a is the conditional expectation of all other beamgparameters.



M-step:

P(m

K
ab)=n- ZP(m(:m)i{Eli:bi:b,ci:k,ai:a}
P}

P(ajm;b) = n -P(m|a;b) - P(a)

Thus, in the Maximization step we compute the most likel
beam parameters given our observed data and our curre
distribution over the intensities for each map cell. First w 58
compute the probability of each map cell having all possible
intensities given the observed intensity return for that ce_ - . - ]
by each beam and the distribution over intensity values f@?a'tgn (r'ig'ﬂgl Velodyne mounting position (left) and afteaesiation and
that cell as computed in the E-step. Then, using Bayes’ rule
we compute the distribution over possible intensity return
values for each beam given the distribution over the map cell (a) Assuming previous Velodyne position.
intensities.

After EM converges, we have a fully generative model for
each beam’s response to environment surfaces of different

reflectivities.

V. EXPERIMENTAL RESULTS

We demonstrate the performance of the calibration algo-
rithms presented here with several experiments. We used a (b) After calibrating for the updated position
Velodyne HD-64E S2 LIDAR sensor with 64 beams oriented
between -22 to +2 degrees vertically and rotating 360 degree
horizontally. The unit spins at 10Hz and provides around
100,000 points per spin. This sensor was mounted to the roof
of our research vehicle as shown in Fig. 2.

In addition, our vehicle pose was provided by an Applanix
LV-420 positioning system that combines GPS, IMU, and
wheel encoder readings to provide global and intertial posg. 7. Moving and rotating the Velodyne, but continuing e uhe original
updates at 200 Hz. However, as the methods described H@@ion_calibration, projecting accumu_latg(_j Velodynermiinto 3D results

. . . in massively deformed structures and significant blurringuofazes (a). After
Only require Ioca”y consistent pose data, we |gnored tbb@l calibration (b), the points are much better aligned, and timepzited transform
GPS pose values and only used the unit’s local 6-DOF velocity the Velodyne is extremely accurate.
updates, which we integrated over time to produce a smooth
local coordinate frame.

We implemented our algorithms in C, taking advantage of
the University of Maryland’s Approximate Nearest Neighbor We collected two short 15-second logfiles with each of two
(ANN) library [5]. For the following results, we used adifferent mounting positions for the Velodyne, for a totdl o
maximum matching distance of 20cm and generated per-betour logfiles. In all four cases, we drove the vehicle in a tigh
pointclouds and surface normals using all laser returns, emi-circular arc close to a building at 2 m/s.

only evaluated the energy function at every 16 points for rjrst e ran the calibration routine on the two logfiles

effiency; with over a million points returned by the Velodyngaien with the initial mounting position. Here, the Velogyn
per second, it is unnecessary to evaluate the energy fnctiynsor was centered laterally on the vehicle, and positione
at every single point. With this implementation on a moderi5) meters forward of the rear axle, which is our positignin

desktop processor, using about 15 seconds of recorded d§§§tem's reference origin. It was pointed straight forwand
the extrinsic and intrinsic calibrations each take on théeor 4 nted parallel to the roof rack, as shown in Fig. 6 (left).

of one hour to converge, given a very bad initialization. ) ] ] ] o o
The remittance intensity calibration is faster, requirmdew On the first logfile, starting with an initial calibration

minutes to run. that was within 10cm and°lof the measured location, our
o o algorithm computed a lateral position of 0.00m, a longitizdli
A. Extrinsic calibration position of 1.51m, a roll of -.03 a yaw of 0.00, and a pitch

First, we show that we can precisely and reliably comput# -.46°. On the second logfile, with the Velodyne in the same
the Velodyne’s mounting location on our vehicle, even witlocation, the algorithm computed a lateral position of 100
a poor initialization. As discussed previously, we attertgpt a longitudinal position of 1.50m, a roll of -.03a yaw of
recover the sensor’s lateral and longitudinal offset antl r00.03, and a pitch of -.48 Thus, from two separate drives,
pitch, and yaw relative the the vehicle’s coordinate frame. from two different locations, the resulting position esties



were within 1 cm and .0Bof each other in all dimensiorfs.

For a more challenging test, we then remounted the Velo-
dyne 5.6 cm to the right and 20.6 cm behind the original
location, and we rotated it counter-clockwise (around the Z
axis) by 9 to 10, as shown in Fig. 6 (right). Now, starting
with the calibrated pose from the original mounting locatio
we ran our algorithm on each of the two new logdfiles. On
the second of the new lodfiles, it correctly estimated that th
sensor had been moved by 6 cm to the right and 21 cm to the . R TR T
rear, and rotated by 9.78counter-clockwise. The dramatic iteration
improvement in the resulting 3D pointcloud, comparing the
assumed original mounting location to the estimated ne¥y 9. cComparing the horizontal angles of all 64 beams withféutory
location, is shown in Fig. 7. calibration, starting with a uniform initial estimate andtiogizing over 400

On the first of the new logfiles the estimate was less acdffiations. Here, the update step size was very low fortglariitially beams

. were miscalibrated by up to°9and after calibration all beams’ angles agreed
rate; the computed offsets were 16cm to the right and 30cmyigh the factory calibration to withinl with an RMS deviation of only .25
the rear, along with 9.56counter-clockwise. Thus, although
the directions of the movement were correct, the amounts
were not. Upon examining this logfile, we discovered that
there had in fact been IMU drift across the trajectory, which
resulted in the accumulated 3D pointcloud showing visible
smearing. Indeed, the inacurrate Velodyne pose estimate ou
algorithm computed not only had a better scoring energy
function than the correct calibration for that logfile, bualiso
visually resulted in less smearing than the correct caiitma
In this case, our algorithm picked the extrinsic calibmatio
that resulted in the "best” 3D pointcloud, but because the
assumption of a correct local trajectory was violated, the
estimated calibration was a bit off.

Therefore, these results demonstrate that our algorithm
produces extremely accurate extrinsic pose estimates when Fig. 10. Improvement in wall planarity with calibration.
the trajectory is known precisely, and that its performance
degrades when the trajectory estimate is inaccurate.

Angular disagreement (degrees)

o o initialized to be significantly different. In one experinten
B. Intrinsic calibration we optimize the horizontal angles starting from a uniform
Next, we show that we can accurately calibrate the Velodyigtial estimate of © per beam. With this initialization, the
sensor’s individual beam angles and range offsets. Recestim angles disagree with the factory calibration by up°to 9
improvements in Velodyne’s meticulous supervised factogyith an RMS disagreement of £.;6after our optimization,
calibration give better results than earlier models; ndy can the maximum disagreement is less thah Wwith an RMS
our algorithm do better still, we show that we are able to takiisagreement of 0.25(Fig. 9). Thus our result is, for all
an artifically bad calibration and use our methods to arrivee abeams, very similar to the factory calibration. Indeedyaligh
calibration whose accuracy exceeds the best availablerjactwe are unable to measure angles to these tolerances, we
calibration. Fig. 8 depicts such an optimization; startivith find the resulting energy functional and visual appearance
an unrealistically bad calibration in which we set all honizal  of our calibration both outperform the factory calibration
angles to be 0 and all range offsets to be equak are able suggesting that much of the disagreement may be due to
to recover an excellent calibration based on only 10 secorfdstory miscalibration, or slight angle shifting over time
of data in a complex unlabeled environment. Going further, in Fig. 10 we see another application of our
We show quantitative success in two ways. First, in optealibration in a simpler environment, after which we hand-
mizating the intrinsic calibration, the angles and rangeet$ selected an area of horizontal ground and vertical wall know
we compute are very similar to the factory values, even whem be planar, and in Fig. 11 we compare the RMS distance
. _ _ of the points to their approximating plane over the course of
We are only able to measure the mounting angles to within sk we o ntimjization. With our artificially bad calibration we stavith
cannot empirically verify the angle calibration to withinett03 granularity .
to which we estimate angles in our algorithm: however, both ghergy ground and wall errors of 54 and 4 cm, respectively, and after
functional and the surfaces in the resulting 3D pointcloads optimal with  optimization these are reduced to 4 and 2 cm, respectively.
g)e ctc;mputed calibration and degrade noticeably if they hemged in either Importantly, the baseline Velodyne factory calibratiovegi
g oton: errors of 6cm and 3cm, respectively, so our unsupervised

5In reality, the horizontal beam angles range frorfi 0 +& within the ) '
Velodyne and the range offsets range from 0.85m to 1.53m. method provides superior results.



(a) Horribly uncalibrated sensor.

(b) After 40 iterations of optimization (c) After 80 iterations of optimization (d) After 300 iterations of optimization
Fig. 8. Unsupervised horizontal angle and range calibmatising 10 seconds of data (all scans depicted above). Rabldsed by surface normal. Even
starting with an unrealistically inaccurate calibrati@) (ve are still able to achieve a very accurate calibrati¢er afptimization (d).

e Calibration results for each of 64 laser beams
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Fig. 11. Quantitative improvement in wall planarity duringliloeation —_ —
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procedure. Final result exceeds factory calibration fahbeall and ground.

Fig. 13. The expected environment intensity given each beartessity
return. All 64 beams are shown here; note significant vanaigtween beams

.\co’
S
&

'9}6\

10,
fusuaiuaniy uanib Ausuiut pamsvau} Jo Aupigeq : d

T

o
&
&
7 b\
&
&
&
b(‘

Fig. 12. The learned generative modRk;|m) for beam 37 of 64.

C. Bayesian remittance calibrations

The results of Bayesian intensity calibration can be se ‘g.p14. Improvement from calibration. We compare an orthdgi@intensity

. . . . . of a street with the horrible angle and range calibratieedun Fig. 8
in Fig. 12, in which we plot the learned generative modekf), the same map with the learned angles and ranges (eate finally
for one of the 64 beams. Here we see, as expected, thdling intensity calibration (right). The final result is rhuenproved.
brighter surfaces tend to yield brighter returns. The sohaw

surprising non-monotonicity of the graph correspondinthi®

brightest 45% of surfaces may be partially explained by ti@ the ground plane, first with our artifically bad calibratjo

fact that fewer than 0.1% of the Velodyne returns fall intatth then with calibrated angles and ranges, and lastly addikg ca
brightness region. Thus, there is very little data to geteatzat ibrated intensities. The final calibrated map displays kswe
section of the graph; at the same time, this phenomenongauiearpness and contrast, indicative of a well-calibratetsee
that region of the response function to rarely be queried.

Each beam has a significantly different intensity response; V1. ConcLUsIoN

we show the expected intensity values of the environmentMulti-beam LIDAR sensors are a key enabling component
given each beam’s measured intensity in Fig. 13.

of advanced mapping and robotic applications, and their use
Finally, we show the significant impact of angle, range, anglill only increase with time. We have presented what we

intensity calibration on the resulting laser maps. In Fig. lbelieve to be the first complete fully unsupervised calibrat
we show an orthographic intensity map of points projectadgorithms for these sensors, and have demonstrated that ex



cellent results are achievable with a trivial amount of dzath

lection in arbitrary unlabeled environments even withibder

initializations. In addition, these methods are extermsinhd

have many related applications. For example, these ahgaosit
could easily be extended to the calibration of multiple Eng
beam LIDARs mounted to one vehicle platform.

Due to the particularly large amount of data generated an
extremely large search space, the algorithms discussediher
natura”y suited to be run offline. However, it is Concei‘HiblFig. 15. 3D pointcloud of a campus parking lot after SLAM antibzation;
that with intelligent data pruning and more aggressivedearso seconds of accumulated data colored by intensity return.
techniques, a similar realtime algorithm could be devealope
to enable on-the-fly sensor calibration while driving. Faysthn
applications, offline calibration is sufficient, but for sens
that are unable to be perfectly secured to the vehicle, &meal
algorithm would provide some benefits.

Although the algorithms we discuss here make particularl
few assumptions about the environment, they do treat t
environment as static, i.e. we assume it is only the dat
collection vehicle that is moving. To the extent that there a
dynamic obstacles during data collection, this motion doul
interfere with the results; in these cases, existing setatien
and tracking algorithms could be employed [12, 13] to remoyeég. 16. Closeup from above scene from another perspegtiats colored
such tracks, although an especially poor initial calitmatinay Y Poth intensity return and surface normal.
render segmentation and tracking more difficult than usual.

In th|s_ paper we presepted_a solution to a particular msiar}g] A. Kaboli, M. Bowling, and P. Musilek "Bayesian calibian for Monte
of the Simultaneous Calibration and Mapping (SCAM) prob-" carlo localization.” AAAI 2006.
lem, in which neither a calibration nor a map is availabl@] N. Muhammad and S. Lacroix "Calibration ~ of a
a priori. Such Siuations are in fact common in practice, [N mUBERT LG pohed | otine
despite being significantly less studied than the more @opul  multiBeamLidar2.pdf 2009.

Simultaneous Localization and Mapping (SLAM) problemds] D. Mountand S. Arya "ANN: A Library for Approximate NeareNeigh-
This discrepency is perhaps due in part to the fact th@} bor Searching” available on-line at http://www.cs.umd/etiount/ANN/

. . . . J. Levinson and S. Thrun "Robust Vehicle Localization Wrban
reasonable calibrations for simple sensors are oftenrudiibe Environments Using Probabilistic Maps” ICRA 2010.

by hand measurement, whereas SLAM problems cannot [Be Y. Chen and G. Medioni "Object Modeling by Registratiof Multiple

i i _ ; Range Images” Proc. of the 1992 |IEEE Intl. Conf. on Roboticd an
solved similarly. In addition, SCAM - or at least the solutio Automation. pp. 2724-2729, 1991,

presented here - is inapplicable to single-beam sensors|gisa. bempster, P. Laird, D. Rubin "Maximum likelihood fromdomplete
they alone do not provide enough data for fully unsupervised data via the EM algorithm.” Journal of the Royal Statisticalcigty.
: . - : Series B 39(1): 1-38.
calibration in the ge_neral setting. . ..[9] A.Segal, D. Haehnel, and S. Thrun "Generalized-ICP” &iis Science
A natural extension would be to combine SCAM with * and Systems, 2009.
SLAM,; that is, to solve Calibration, Localization, and Map#10] J. UnderWO%t_iI, A.IHifII, and S. S%hedingd "Calib;atir?n %gf TEESE%{SJ
L : L pose on mobile platforms” in Proceedings of the
ping jointly when none are known pr_eC|ser. lr_] prel_lmlnary International Conference on Intelligent Robots and Systeas Diego,
work, we have aligned a several-minute logfile with both ca, october 2007
SLAM and SCAM as presented here; a resulting 3D poinill] S. Thrun, W. Burgard and D. Fox. Probabilistic Robati®sl T Press,

. . 2005.
cloud can be seen in Fig. 15. However, more research (5] K. Lee, B. Kalyan, S. Wijesoma, M. Adams, F. Hover, and N: Pa

required to arrive at a consistent approach to jointly ojating trikalakis "Tracking random finite objects using 3D-LIDAR imarine
all unknowns in the general case, particularly if the initiase gﬂvironmentS" Proceedings of the 2010 ACM Symposium on Agplie
omputing.

eSt_'mat_e IS pOOI‘..OUI‘ results b_eneflt from a high-end IM 13] J. Shackleton, B. VanVoorst, J. Hesch "Tracking Peopith a 360-
which is not available or practical for all robots, and thus degree Lidar” 7th IEEE Conference on Advanced Video and&igased

a joint algorithm for recovering calibration and localipat 14]SAUFV§i”ancel-<2010- s Th Model based vehicle di g

: ; . Petrovskaya an . run "Model based vehicle deiactn
without a known map would be a worthwhile goal for fuwré tracking for autonomous urban driving” Autonomous Robotslukie
research. 26 Issue 2-3. April 2009.

[15] B. Douillard, A. Brooks and F. Ramos "A 3D Laser and Vision
Based Classifier International Conference in Intelligeabs®rs, Sensor
Networks and Information Professing (ISSNIP) 2009.

[16] D. Steinhauser, O. Ruepp and D. Burschka “"Motion segatmmt
and scene classification from 3D LIDAR data” Intelligent \@as
Symposium, IEEE. 2008.
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