
A Probabilistic Framework for Car Detection in Images using Context
and Scale

David Held, Jesse Levinson and Sebastian Thrun

Abstract— Detecting cars in real-world images is an impor-
tant task for autonomous driving, yet it remains unsolved.
The system described in this paper takes advantage of context
and scale to build a monocular single-frame image-based car
detector that significantly outperforms the baseline. The system
uses a probabilistic model to combine multiple forms of evidence
for both context and scale to locate cars in a real-world image.
We also use scale filtering to speed up our algorithm by a
factor of 3.3 compared to the baseline. By using a calibrated
camera and localization on a road map, we are able to obtain
context and scale information from a single image without the
use of a 3D laser. The system outperforms the baseline by
an absolute 9.4% in overall average precision and 11.7% in
average precision for cars smaller than 50 pixels in height, for
which context and scale cues are especially important.

I. INTRODUCTION

Autonomous driving is an important task that could poten-
tially save over a million lives each year [1]. However, fully
autonomous driving, especially using affordable sensors,
remains an unsolved problem. In order to safely drive on
highways and urban streets, it is important for an autonomous
system to be aware of the surrounding environment. To
avoid collisions with other vehicles, it is crucial to have a
system that can accurately detect nearby cars. Additionally,
for driving at high speeds, detecting cars from a distance is
also important. In this paper, we present an image-based car
detection system using context and scale that significantly
outperforms the baseline detector on this task.

A number of recent robotics efforts have combined 3D
depth information with 2D appearance cues for indoor object
detection. For example, affordable 3D range sensors have
been used for object detection at close range in indoor
environments [2]–[4] but these sensors fail at longer range
and in outdoor environments. Stereo data has been used
to assist object detection [5], but such data is noisy and
most useful at shorter ranges. Multiple frames can also be
combined to estimate depth using a structure-from-motion
approach, as in [6] and [7]. Time-of-flight cameras have also
been used [8], which provide low resolution images with a
depth map at short ranges.

For long ranges in outdoor environments, the Velodyne
multi-beam laser has been used successfully for high perfor-
mance in both segmentation [9] and track classification [10].
However, this laser costs about $80,000 and is thus pro-
hibitively expensive for commercial applications such as
affordable autonomous driving.

In the vision community, some researchers have attempted
to improve object detection by inferring scale from a single
image, most notably in [11]. However, it is unclear from this

Fig. 1. Left: Detections returned by Felzenszwalb’s state-of-the-art car
detector. Note the large number of detections at inappropriate scales and con-
texts. Right: Detections returned by our algorithm, combining appearance,
scale, and context. Note that the detections are all much more reasonable.
False positives are shown in red; true positives are shown in green. This
figure was produced by lowering the threshold for illustration purposes. At
a higher threshold, only the correct detections are returned by our method.

work how many of the errors are a result of an incorrect
scale estimation. For instance, [11] presents an example
in which the windows of a building cause the model to
estimate an incorrect location for the horizon line, leading
to poor detection performance. Although the performance is
impressive given their difficult task, in robotics applications
we can take advantage of external knowledge without having
to infer the scene geometry from visual cues alone.

Over the past decade, there has been a profusion of com-
puter vision research using context for object detection [12]–
[15]. As with scale, in robotic applications we can use maps
combined with localization to obtain context information
directly, without having to infer it from the image.

In this paper, we present a probabilistic model for combin-
ing appearance, scale, and context scores for object detection
in images obtained from a robotic framework. Because of the
flexibility of our model, we can combine multiple pieces of
evidence for both scale and context without having to infer
a single understanding of the scene. We are able to obtain
scale and context information using only our localization
system and a road map, without having to use any sensors
to measure the scale or context directly. We also filter our
images by scale prior to feature extraction, leading to a
speed up over the baseline of a factor of 3.3. The resulting
system significantly outperforms the baseline, especially on
distant cars for which context and scale cues are particularly

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 1628



important relative to appearance cues alone.

II. DETECTION SCORES
A. Appearance Model

The appearance model we use is Felzenszwalb’s de-
formable parts-based model [16], trained on the PASCAL
2007 training set. We use the cascade-detection speed-up
described in [17]. This model comes pre-trained with a
baseline car detector [18]. Briefly, the model uses a latent
SVM to learn a set of car templates (Figure 2) that represent
6 different car orientations. Each orientation consists of a
“root” template that roughly corresponds to the outline of
a car, and 6 “part” templates that contain more detailed
representations of different sections of a car in an image.
Each of these templates is convolved with the gradient of
the test image at multiple scales, and the locations with high
responses for the root and part templates, in which the part
templates are reasonably positioned with respect to the root,
are declared to be car detections.

Fig. 2. Car models used by the Felzenszwalb appearance model (best
viewed on a computer at high resolution). Left column: Car root templates.
Middle column: Car part templates. Right column: Expected position of each
of the parts, relative to the root. Each row represents a car at a different
orientation.

The first step of our algorithm is to run Felzenszwalb’s
appearance model on the scale-filtered image, described in
section III-A. The result is a set of bounding boxes, each
with a score which indicates how much the appearance of
the bounding box matches with that of a car. Note that
because of shadows, occlusions, or car types that do not
match to one of the templates, some cars will get a relatively
low score from our appearance model. Additionally, some
objects that are not cars will get a relatively high score due
to random gradients in the image that happen to align with
one of the car templates. To remove these false positives
without creating new false negatives, our algorithm uses the
appearance score as just one of a set of scores to determine
the final classification for each bounding box.

B. Scale Scores

As shown in Figure 1, using just the appearance model
alone results in many false detections at the wrong scale.

For example, the appearance model will return detections
that appear close to the camera but are extremely small, and
detections that are far from the camera that are extremely
large. Both of these are unrealistic given the natural range
of car sizes in the real world.

To help remove some of these false positives, we compute
two scores for each bounding box based on how scale-
appropriate the size of the box is given its location on the
image. The two scores take into account two different sources
of variance. First, cars come in different shapes and sizes,
and the variance in real-world car height causes a similar
variance in the size of cars in the image. Second, errors in
elevation, pitch, calibration, and discretization can compound
to lead to an error in the estimated height of an object in the
image. Because of these two different sources of variance, we
compute two scale scores, each of which assumes a different
source of variance.

To compute the first scale score, we use the camera’s
known position and orientation relative to the ground to
estimate the real-world height (in meters) of an object
contained within a given bounding box in the image. The
implementation details of this height estimation using our
robotic system are explained in section IV-A. Next, we
calculate the probability of a real car having this estimated
height using a probability distribution over car heights. In
this case, we assume that cars have a mean height of 1.6 m
with a standard deviation of 0.4 m. The computed probability
is rescaled from 0 to 1 and the resulting value is used as a
scale score. This score predicts the scale-appropriateness of a
given bounding box, while taking into account the real-world
variance in car heights.

We also add a second score to take into account the vari-
ance caused by errors in our height estimation. To calculate
this score, we first compute the expected height h, in pixels,
of a car that is 1.6 m tall and located at the location of the
bounding box in the image. We then estimate that, because
of errors in our prediction, the actual size (in pixels) of a
bounding box from a car of this height might be modeled
by a Gaussian distribution, with a mean of h and a standard
deviation of 20 pixels. Using this distribution, we compute
the probability that a car projected into the image will be
the size of our bounding box, given our estimated distance
to this bounding box. We scale the result to range from 0 to
1. Using these two scores, we can prune away false positives
that appear at unrealistic scales for cars in images.

C. Context Scores

Figure 1 also demonstrates that the appearance model of-
ten detects cars located at unrealistic positions in the image,
such as in the sky or inside a tree. Because our autonomous
vehicle already requires a road map for navigation, we can
use this road map, and our known position and orientation on
this map, to automatically estimate the position of the road
in an image. The implementation details of this computation
for our robotic system are described in section IV-B.

Using the estimated position of the road in an image, we
would like to give a low weight to detections located at

1629



unlikely positions. Note that, because we are giving a higher
weight to cars cars located on the road, we are less likely to
detect cars parked on the grass or in a nearby parking lot. For
our application, this is acceptable or even desired, because
we wish to use this car detector to locate other cars on or
near the road, in order to avoid accidents while driving.

As with scale, we compute two context scores, to take
into account two sources of variance. First, a car might not
always be driving in the middle of the road, but rather it
might be driving in the shoulder of the road. Second, errors
in calibration might cause our system to incorrectly estimate
which parts of the image contain the road. Thus we add
two context scores, each of which will take into account a
different source of variance.

The first context score takes into account the variance from
cars pulled over to the side of the road, or otherwise not
driving in the center of the road. To compute this context
score, we first estimate the location of the bounding box in
global coordinates. To do this, we assume that the bottom
center pixel of the bounding box is a point on the ground. We
then use our localization system and our calibrated camera
to estimate the global coordinates of the object contained
within this bounding box. Using this estimated real-world
position, we then estimate the distance in meters to the
nearest road using a quadtree road network system. The
implementation details are further described in section IV-
B. Using this distance, we compute the first context score
as

scorem =
1

dm + 1

where dm is the estimated distance in meters to the nearest
road. When the bounding box is located on the road, we have
dm = 0, leading to a score of 1. For cars located to the side
of the road, the score decreases slowly to 0. This score can
be visualized in Figure 3.

Fig. 3. Left: car image. Middle: Context score, based on the estimated
distance to road in meters. Right: Context score, based on the estimated
distance to road in pixels. Brighter parts indicate a higher context score;
darker parts indicate a lower context score.

On the other hand, errors in localization might cause us
to incorrectly estimate the position of the road in the image.
To account for these types of errors, we add another context
score in which we estimate the distance in pixels, dp, from
the bounding box to the nearest road pixel. This context score
is now computed as

scorep =
1

dp + 1

This score can be visualized in Figure 3. Note that both
of the context scores are computed automatically using our
localized position on a road map and our calibrated camera.

III. ALGORITHM

A. Scale Filtering

In order to speed up the algorithm, we first filter the image
based on scale. Felzenszwalb’s car detector [16] iteratively
searches for cars at different scales in the image. Because
we can estimate the scale of objects in the image using the
position of our calibrated camera relative to the ground plane,
we can limit our search to regions of the image that are
appropriate for each scale. Thus at each scale, we black out
the portions of the image that are not relevant for that scale,
as shown in Figure 4. Specifically, we find these regions
using our pixel-based scale score, removing all portions of
the image that would receive a scale score of less than 0.1,
on a scale from 0 to 1. The result of this blackout is that
many of the features computed are 0, and these regions of
the image are pruned away at the beginning of the cascade
detection step of [16], allowing the detector to spend more
time searching for cars in regions of the image that are more
scale-appropriate for each bounding box size. This gives a
small boost in performance, as shown in section VII, and it
gives a large increase in speed, decreasing the runtime of the
algorithm by a factor of 3.3.

Fig. 4. Left: We black out the image except near the horizon, to search for
smaller cars. Right: We black out the image except lower pixels, to search
for larger cars. The white boxes indicate the scale of car that is being
searched for in the image. By limiting our search space at each scale, we
get better performance and a large increase in the speed of our algorithm.

After applying the scale filtering, we run the appearance
model to get bounding boxes over the image, and for each
bounding box we compute scale and context scores. Thus,
for each bounding box, we obtain an appearance score, two
scale scores, and two context scores.

B. Probabilistic Framework

Using the appearance, scale, and context scores described
in section II, we compute a new prediction for each bounding
box using the dual form of L2-regularized logistic regression.

1630



This regression is trained using our training set, described
below. Our training set contains 282,283 negative exam-
ples and only 2,180 positive examples. Because of this
large imbalance, we weight the C parameter differently
across the different classes. For the negative class, we use
C0 = 0.007664 ∗ C and for the positive class we use
C1 = 0.992336 ∗ C, thereby weighting the loss differently
for positive and negative training examples to counter the
imbalance in the class sizes. We choose a C value of 10,000
from cross-validation by holding out 20% of our training set
for parameter tuning. After choosing C, the final model is
learned on all of the training data.

Using the resulting logistic regression model, we predict
a new confidence value for each bounding box. Note that,
because we are using a probabilistic framework, we are not
limited to compute a single maximum-likelihood estimate of
our distance to the road or the real-world height of each
bounding box object. Rather, we can compute two scores
for each of scale and context and one score for appearance,
and we can use all of these scores to predict our final
classification. Thus, our model is extremely flexible and
can be used with any number of scores that may not be
conditionally independent.

C. Aggressive non-maximum suppression

After applying the logistic regression to rescore all of
our detections, we often end up with a large number of
overlapping high-scoring detections that all correspond to the
same car in the real world. To handle this, we apply an ag-
gressive non-maximum suppression algorithm, discarding all
bounding boxes that overlap with a higher-scoring bounding
box by at least 20%. For cars that occlude each other by more
than 20%, this will result in missed detections. However,
because cars tend to stay separated in the real world in
order to avoid collisions, this assumption is reasonable in
many cases. This non-maximum suppression results in an
overall gain on our validation performance as well as our
test performance, so we include this as the final step of our
algorithm.

IV. SYSTEM

Our research vehicle is a 2006 Volkswagen Passat wagon.
A Point Grey Ladybug-3 panoramic RGB camera with six
1600x1200 cameras and a 15 Hz frame rate is used to capture
video; for simplicity, the results in this paper use only a
single forward-facing camera out of the six. An Applanix
POS-LV 420 GPS/IMU system with Omnistar satellite-based
Virtual Base Station service generates pose and inertial up-
dates for the vehicle at 200 Hz. This localization, combined
with the hand-measured calibration between the Ladybug
camera and the vehicle (which must be performed once when
the camera is fixed to the car), give us a registration between
the camera images and the digital road map, represented in
global coordinates. Note that, although our Applanix local-
ization system is rather expensive ($150,000), Section VIII
shows that our method is robust to localization errors typical

of consumer-grade GPS systems, so a much cheaper and less
accurate localization system could also have been used.

A. Estimating Scale

Given the registration between the camera images and the
global coordinate system, we can project any point from
the real world onto the camera image. However, the reverse
transformation is ambiguous; a single point on the image
corresponds to a line of points in the real world. In order to
estimate the distance to objects in the image, we compute a
set of “image reference points” as follows: first, we imagine a
grid placed on the ground plane surrounding the ego vehicle.
In our case, we use a 100 m by 100 m grid in which points
are spaced 0.5 m apart. For this paper, we have assumed
that the ground is planar, although maps with elevation data
could easily be used if necessary.

We then project each grid point onto the image to obtain
a set of “image reference points,” as shown in Figure 5.
Because we know the grid point from which each image
point was projected, these image reference points define a
mapping from pixels to global coordinates. Thus for any
pixel in the image, we can estimate its distance to the
camera by simply returning the distance of its nearest image
reference point in the 2d image plane. This process is shown
in Figure 5.

To determine which points in the image correspond to
ground and which correspond to sky, we note that points on
the ground all lie near to some image reference point, which
was projected from a grid on the ground plane surrounding
the ego vehicle to the ground plane in the image. On the
other hand, pixels in the sky lie farther away from any image
reference point (see Figure 5). Thus we use a simple cutoff
and assume that any point that is more than 100 pixels away
from its nearest image reference point must be in the sky.

Fig. 5. Left: Normal image. Middle: Image with reference points. Right:
Estimated distance to all image pixels. Red points are estimated to be closer
to the camera, and green points are estimated to be farther from the camera.

B. Estimating Context

Using our GPS/IMU system, we are able to localize our-
selves on a pre-recorded road map. These maps are necessary
for the autonomous system to navigate from a given starting
point to a desired destination. We have entered the road
network into a quadtree data structure for fast queries. By
localizing our position and orientation on the map, and by
using the scale calibration described in section IV-A, we

1631



are able to automatically estimate which pixels in the image
lie on the road and which do not, as follows: For a given
pixel, we use the image reference point system described in
section IV-A to estimate the position of this pixel relative to
the car, assuming that this pixel lies on the ground plane.
Then given our position in global coordinates, we can use
this relative position to estimate the global position of this
pixel. Next we simply look up the global position of this
point in our quadtree road network to estimate the distance
from this pixel to the nearest road. This information is used
to compute the context score, described in section II-C and
visualized in Figure 3.

V. BASELINE

The baseline of our algorithm is the appearance model
from Felzenszwalb’s deformable parts-based model [16],
trained on the PASCAL 2007 training set, as described
in section II-A. The appearance model we use contains
two minor variations on top of the original code that is
publicly available online. First, the original model combines
8 neighboring pixels into a single super-pixel, in order to
compress the image to the size of the template. We found
that 8 pixels was too large to detect the smallest cars in our
test set, so we lower this super-pixel size to 4 neighboring
pixels. We change this parameter for both our context/scale
detector and for the baseline detector, allowing us to detect
smaller cars in both cases.

Second, the non-maximum suppression step that is used in
the original code removes bounding boxes for which the ratio
of the intersection with a higher-scoring bounding box to the
area of the higher-scoring bounding box alone is greater than
0.5. We find that this tends to favor larger bounding boxes at
the expense of filtering out smaller bounding boxes, which
is not preferred. Thus we modify this slightly to only filter
bounding boxes for which the ratios of intersection to the
area of both the lower and higher scoring bounding boxes
are both greater than 0.5.

Both the change in the bin-size and the change in the non-
maximum suppression algorithm are only minor adjustments
to the original code from [18]. We use the original algorithm
with these two adjustments as the baseline to compare
performance with our algorithm.

As described in section III-C, the last step in our algorithm
is to apply an aggressive non-maximum suppression. To
isolate the effect of using scale and context on our perfor-
mance, we compare the performance of our algorithm to
a second baseline, in which we apply this aggressive non-
maximum suppression to Felzenszwalb’s original deformable
parts-based model [16].

VI. DATASET

A. Training Sets

For the appearance model, we used the pre-trained car
models provided with [18] that were trained on the car
images from the PASCAL 2007 training set [19]. This
training set consists of 625 labeled cars from 376 separate
images. Note that these images were downloaded from

Flickr, each taken with a different camera, and they include
many different types of scenes. Some of the types of images
that were used in training are shown in Figure 6. On the
other hand, the images used in our test set are all real-world
outdoor images recorded while driving with the Ladybug
camera mounted on top of a car. The system presented in
this paper did not require any retraining of the appearance
model, despite the large differences in the types of images
used in the training and test sets. However, retraining the
appearance model using the same type of images found in
the test set could lead to additional performance gains.

Fig. 6. A selection of images from PASCAL 2007 used to train the
appearance model in [18], which is used as part of our algorithm. Notice
the difference in the type of images used in the training set compared to
the type of images found in our test set (e.g. Figure 1)

For training the parameters of our logistic regression, we
use a second training set recorded while driving around
Stanford campus, taken in a different part of campus from
what was used for the test set. In this training set, we have
2597 labeled cars from 1501 separate images.

B. Test set

In our test set, we have 1932 labeled cars from 1120 sepa-
rate images, recorded while driving around Stanford campus.
Each image is 1232 x 1616 pixels, which is much larger
than the standard image used in the PASCAL competition
(typically around 500 x 350 pixels). Because our images are
so large, both our algorithm and the baseline algorithm [18]
run significantly slower than the same algorithms run on the
smaller PASCAL images. Because the size of our images
affects both the baseline detector as well as our improved
context/scale detector, we can use the runtime of the baseline
detector on these larger images as the basis for comparison.

This real-world data set is challenging for many reasons.
There are many occlusions resulting from nearby cars over-
lapping each other in the image. There are also many shad-
ows from trees or other objects that add spurious gradients to
the image. Labeled cars range in size from 16 to 405 pixels
and have a wide range of models, colors, and orientations.
These are all challenges that a real car will encounter while
trying to drive autonomously, and all of these issues must

1632



be dealt with in some way before vision-based autonomous
driving is possible.

VII. RESULTS

By pre-filtering each image by scale, we are able to reduce
the runtime of our algorithm from 43 seconds per frame
down to 13 seconds, or a speedup of 3.3 times over the
baseline on the same set of images. The time for computing
the context and scale scores, and using these scores in the
logistic regression framework, has a negligible effect on our
total computation time. Although our unoptimized imple-
mentation currently runs at approximately 1% of real-time,
we believe that with intelligent optimizations and a GPU
implementation, real-time performance could be achieved.

In looking at the weights learned by our logistic regression
classifier, the distance to the road is given the most weight
and is thus deemed to be very important in correctly identi-
fying an object as a car. The appearance and height scores
are given similar weights and are thus considered to have
roughly equal importance.

The performance of our algorithm compared to the base-
line can be seen in Figure 7. As explained in section V,
we have two algorithms that we both consider to be our
baselines - Felzenszwalb’s original appearance model, and
Felzenszwalb’s model with aggressive non-maximum sup-
pression. Figure 7 shows that our algorithm achieves an
average precision of 52.9%, whereas the better of the two
baselines achieves an average precision of only 43.5%. Note
that, because cars make up a small percentage of each image,
both the baseline and our algorithm are performing far better
than random chance. The total area occupied by all cars in
our test set makes up about 1.1% of the total area of all
test images, so a random classifier would have a precision
of about 1.1%.

Fig. 7. Comparison of our algorithm (magenta) to the baseline (cyan). Dark
blue: Baseline 1, from Felzenszwalb [18]. Cyan: Baseline 1 using aggres-
sive non-maximum suppression. Green: Scale filtering. Red: Context/scale
rescoring. Magenta: Context/scale rescoring with aggressive non-maximum
suppression

The majority of the benefit of using context and scale
comes when searching for cars that are far away. Because
these cars have a small size in the image, using context and
scale is especially important, since the appearance of the car
in the image gives less useful information. Figure 8 shows the

benefit of using our context and scale model when looking
for cars less than 50 pixels in height. Although finding such
small cars is difficult for any detector, using context and
scale leads to an improvement of 11.7% in average precision.
Finding distant cars is extremely important, especially for
highway driving, in which one must be aware of a distant but
quickly approaching car when deciding whether to change
lanes. Being aware of distant cars is also important when we
are driving quickly in order to slow down in time to avoid
hitting a car that has stopped in front of us because of heavy
traffic.

Fig. 8. Comparison of our method (magenta) with the baseline (cyan) on
small (i.e. distant) cars

Naturally, detecting nearby cars is also important. Thus,
to fully evaluate the performance of our algorithm, we
recompute the average precision while ignoring cars below a
certain pixel size threshold. Further, we ignore cars that are
cut off by the edge of the image, determined by whether the
bounding box is within 10 pixels from the edge of the image.
In a real system, we would be using all 6 cameras from our
Ladybug-3 panoramic camera system. Thus a car that is cut
off by the edge of one image will most likely appear in
a neighboring image, because of overlap between adjacent
cameras. As shown in Figure 9, our system achieving 81.6%
average precision for cars greater than 50 pixels in height.

Fig. 9. Performance of our method when ignoring cars below a given
number of pixels in height.

1633



VIII. SENSITIVITY TO LOCALIZATION
ACCURACY

Because our method relies on localization to improve
object detection, it is informative to quantify the effect of
errors in localization on detection performance. To test this,
we artificially added Gaussian noise e to our localization
estimates, with e ∼ N(0, σ), for σ ∈ {0, 0.5, 1, 1.5, 2, 2.5}
meters. We resample the noise at every time step. The results
are shown in Figure 10. By introducing a Gaussian noise
of e ∼ N(0, 2.5) meters, our performance degrades from
52.9% average precision to 52.0%. Thus our method is not
very sensitive to localization accuracy, and even a cheap
GPS system can be used to obtain nearly the same gains
in performance.

Fig. 10. Effect of GPS error on our performance. Our method (blue line,
top) exhibits a very slight decrease in performance with increasing GPS
noise. The other methods do not use localization information to assist in
detection so they are unaffected by localization errors.

IX. CONCLUSIONS

By using scale and context cues obtained from our local-
ization system and a road map, we are able to improve on
the state-of-the-art in car detection systems without using 3D
range data. Our vision-based system is able to detect distant
cars with a higher degree of accuracy than previous methods,
leading the way towards a camera-based autonomous driving
system. Our probabilistic model combines multiple sources
of evidence for scale, context, and appearance to make a
more informed prediction about car locations. Because of the
flexibility of this design, additional sources of information
can easily be added to the system to further improve the
detector.

Although the reliable detection of vehicles using only a
monocular camera remains an elusive goal, our work shows
that the state of the art can be significantly improved by
considering context and scale. Given that all autonomous
cars must have a localization system and some form of a
road map, our insight provides an encouraging improvement
to vision-based object detection for any similar system.

X. ACKNOWLEDGMENTS

We would like to thank David Jackson, Alex Teichman,
Michael Sokolsky, Vaughan Pratt, David Stavens, and Soeren
Kammel for their helpful comments and advice.

REFERENCES

[1] United Nations General Assembly. Global road safety crisis, 2003.
[2] Stephen Gould, Paul Baumstarck, Morgan Quigley, Andrew Y. Ng,

and Daphne Koller. Integrating visual and range data for robotic
object detection. In ECCV Workshop on Multi-camera and Multi-
modal Sensor Fusion Algorithms and Applications (M2SFA2), 2008.

[3] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Sparse distance
learning for object recognition combining rgb and depth information.
In ICRA, pages 4007–4013, 2011.

[4] Morgan Quigley, Siddharth Batra, Stephen Gould, Ellen Klingbeil,
Quoc Le, Ashley Wellman, and Andrew Y. Ng. High-accuracy 3d
sensing for mobile manipulation: Improving object detection and
door opening. In Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, pages 2816 –2822, may 2009.

[5] S. Helmer and D. Lowe. Using stereo for object recognition. In
Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pages 3121 –3127, may 2010.

[6] Bastian Leibe, Nico Cornelis, Kurt Cornelis, and Luc Van Gool.
Dynamic 3d scene analysis from a moving vehicle. Computer Vision
and Pattern Recognition, IEEE Computer Society Conference on, 0:1–
8, 2007.

[7] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto
Cipolla. Segmentation and recognition using structure from motion
point clouds. In Proceedings of the 10th European Conference on
Computer Vision: Part I, ECCV ’08, pages 44–57, Berlin, Heidelberg,
2008. Springer-Verlag.

[8] Amit Bleiweiss and Michael Werman. Fusing time-of-flight depth
and color for real-time segmentation and tracking. In Andreas Kolb
and Reinhard Koch, editors, Dynamic 3D Imaging, volume 5742 of
Lecture Notes in Computer Science, pages 58–69. Springer Berlin /
Heidelberg, 2009.

[9] J.R. Schoenberg, A. Nathan, and M. Campbell. Segmentation of dense
range information in complex urban scenes. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pages
2033 –2038, oct. 2010.

[10] Alex Teichman, Jesse Levinson, and Sebastian Thrun. Towards 3d
object recognition via classification of arbitrary object tracks. In ICRA,
pages 4034–4041, 2011.

[11] D. Hoiem, A.A. Efros, and M. Hebert. Putting objects in perspective.
In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on, volume 2, pages 2137 – 2144, 2006.

[12] S.K. Divvala, D. Hoiem, J.H. Hays, A.A. Efros, and M. Hebert. An
empirical study of context in object detection. Computer Vision and
Pattern Recognition, IEEE Computer Society Conference on, 0:1271–
1278, 2009.

[13] Geremy Heitz and Daphne Koller. Learning spatial context: Using stuff
to find things. In David Forsyth, Philip Torr, and Andrew Zisserman,
editors, Computer Vision ECCV 2008, volume 5302 of Lecture Notes
in Computer Science, pages 30–43. Springer Berlin / Heidelberg.

[14] Antonio Torralba, Kevin P. Murphy, William T. Freeman, and Mark A.
Rubin. Context-based vision system for place and object recognition.
Computer Vision, IEEE International Conference on, 1:273, 2003.

[15] Bangpeng Yao and Li Fei-Fei. Modeling mutual context of object and
human pose in human-object interaction activities. In The Twenty-
Third IEEE Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, June 2010.

[16] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and
Deva Ramanan. Object detection with discriminatively trained part-
based models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32:1627–1645, 2010.

[17] P.F. Felzenszwalb, R.B. Girshick, and D. McAllester. Cascade object
detection with deformable part models. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2241
–2248, june 2010.

[18] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester.
Discriminatively trained deformable part models, release 4.
http://people.cs.uchicago.edu/ pff/latent-release4/.

[19] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

1634


